INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 907-921

Energy release rate and path independent integral study
for piezoelectric material with crack

C.P. Spyropoulos *

Department of Mechanics, National Technical University of Athens, Zografou Campus, Theocaris Bld, Gr. 15773 Athens, Greece
Received 21 April 2003

Abstract

The concept that an excess of energy would be required to extend a segment of the crack has been widely accepted
and applied to characterize crack extension behavior for isotropic and homogeneous materials at the macroscopic scale.
For linear elastic materials, the path independent integral is basically the same as that of energy release rate.

Fracture analyses of multifunctional materials that involve mechanical as well as electric energy, however, show that
inconsistencies could arise when applying the energy release rate or the path independent integral as a criterion of
fracture. A sign change in the computed energy release rate could occur depending on the specified boundary condi-
tions. This means that crack extension could correspond to dissipation as well as absorption of energy. Although this
result has been pointed out in earlier publications but the implications have not been fully explored.

In order to focus attention on the objective of this work, a simplified formulation of the piezoelectric crack problem
will be considered. It will contain only three material constants. As it has been shown in previous works, the simplified
piezoelastic solutions would exhibit the same qualitative conclusions. Results are presented for poling directed normal
and parallel to the line crack. Shown specifically is the energy release rate can change sign as the applied mechanical
stress is altered in relation to the applied electric field.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Studies concerned with the fracture of piezoceramic materials have had continuing interest in the lite-
rature for many years, both theoretically (McMeeking, 1990; Li et al., 1990; Gao and Barnett, 1996) and
experimentally (Pak and Tobin, 1993; Tobin and Pak, 1993; Park and Sun, 1995). They are too numerous
to be listed. Among the papers that stand out as being original in finding parameters for characterizing
the fracture behavior of piezoelectric materials are those of Gao et al. (1997) and Suo et al. (1992).
Derived by Suo et al. (1992) is a path independent integral J for the piezoelectric material in contrast to
the original J-integral derived by Rice (1968) for the isotropic (elastic) material that could be nonlinear
but still elastic. That is it could be applied to the theory of deformation plasticity. Budiansky and Rice

" Tel.: +30-210-7721305; fax: +30-210-7721302.
E-mail address: cspyrop@central.ntua.gr (C.P. Spyropoulos).

0020-7683/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijs0lstr.2003.09.031


mail to: cspyrop@central.ntua.gr

908 C.P. Spyropoulos | International Journal of Solids and Structures 41 (2004) 907-921

(1973) attempted to extend the use of path independent integrals by introducing other integrals referred to
as L and M but their physical meaning in terms of fracture was not clear even though they have been
expounded extensively by others (Chen and Ma, 1997; Herrmann and Herrmann, 1981; Chen and Hasebe,
1998; Chen and Lu, 2001). One of the objectives of the present work is to point out the need to understand
whether it is possible to have a negative energy release rate as it was raised in the paper by Gao et al. (1997).
Obviously, some basic experiments should be done to provide some insights to this problem. The
continuing publication of results related to J, L or M integrals for different crack configurations serves little
Or NO purpose.

There are alternate choices for fracture criteria. One of them is the strain energy density factor criterion
(Zuo and Sih, 2000; Sih and Zuo, 2000; Sih and Song, 2002; Song and Sih, 2002). It has the advantage that
it is always positive and does not encounter the difficulties to explain that the crack tip would release energy
at one time and absorb energy at other times. What the strain energy density criterion has already done is to
have explained the phenomenon of crack growth enhancement and retardation when the direction of the
applied electric field is changed relative to that of poling (Zuo and Sih, 2000; Sih and Zuo, 2000; Spyro-
poulos et al., 2002). The energy release rate expression could not explain this phenomenon when the
direction of poling is reversed.

2. Simplified formulation of piezoelasticity

In order to facilitate the computation of the energy release rate quantity, the classical piezoelastic
equations will be approximated and simplified for solving crack problems. It is assumed that the dis-
placement in the material parallel to the crack is negligibly small in comparison with that normal to the
crack in a two-dimensional space. This approach was first introduced by Rice et al. (1994) and later was
used in conjunction with complex functions (Gao et al., 1997; Sih, 2002).

Considered is a crack with length 2a that lies on x-axis centered at the origin of coordinate as shown in
Fig. 1. Mechanical stress 0., or strain €., are applied to the medium at distance remote from the crack.
Electric field E, or electric displacement D, can also be applied as shown in Fig. 1(a) for poling normal to
the crack and in Fig. 1(b) for poling parallel to the crack. In the former case, there prevails a transverse
stress 0>° = eE°. Here, e stands for one of the piezoelectric constants of the materials. The simplified
version of the displacement field can be written as
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Fig. 1. Boundary conditions and poling directions: (a) poling normal to crack and (b) poling parallel to crack.
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u, =0, u,=u(xy) (1)

The electric field components E, and E, can be expressed in terms of an electric potential function ¢(x, y)
as

E, = _(b‘x, Ey = _d),y (2)

where comma refers to differentiation with respect to the space variables. The boundary condition on crack
surface can be written as

0,=0, D,=0 for —a<x<a; y=0 (3)

2.1. Poling normal to crack

If the poling direction coincides with the y-axis, then the constituent relations are given by

o= e, 0y =(muted), oy =(m+ed), “)

Dy=(eu—se¢),, Dy=(eu—sd), (5)

Refer to Gao et al. (1997) and Sih (2002) for details. In the absence of body force and body charge, the
governing field equations become

V=0, V=0 ©)

in which V? is the Laplacian operator in two-dimensions.
According to Eq. (6), the displacement and electric potential functions can be expressed in terms of two
complex functions of the variable z = x 4 iy as

u=ImQ(), ¢ = Im[o(). (7)
It follows that the stress and electric displacement components are given by

o, +i0,, = mQ (z) + e?'(2)

D, +iD, = e (z) — e® () ®)

For an embedded line crack, the potential functions Q(z) and &(z) take the form
Qz) =4V —a*, P(z) =BV —d? )

The crack surface conditions in Eq. (3) are thus satisfied. The constants 4 and B are required to be real.
They can be determined from the boundary conditions at infinity. Without going into details, the
asymptotic field solution can be written as

a 0 a . 0 a 0
o, = (mA+eB),/;cos§, 0, = —(mA + eB) 5,5y, Ox= —eB,/ZCOSE o)
Dy = (ed — eB) [ LcosY, D, = —(ed—eB)y | Lsinl
y TN, 50 T e N[5,
The total energy density function W is
1 1 A + ¢B?
W =~ oy¢; + 5 DiE; :—a(m +B) (11)

2 2 4r
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The J-integral originally derived by Rice (1968) is given by
C ax 2

while the energy release rate using crack enclosure procedure as proposed by Irwin takes the form

1 oa amn
Gy = 2Ems | o,i(a +x)u;(a — da+x)dx = EA(mA +eB) (13)

The modified J-integral for piezoelasticity can be found in Suo et al. (1992) and it is designated as

Jl = % |:(W — D,-E,-)nx — O'”n/% — niDi¢x:| dS = % (mAz + 2eAB — 8B2) (14)
c B ,
au,-
Jr= j{ (W — D:Ej)n, — gn; — — nDi¢,|ds =0 (15)
c Sy '

in which the subscripts i, j = x, y. Similarly, a modified energy release rate for piezoelasticity is

1 da
G=—-Lim— / [0yi(a + x)u;(a — 8a + x) + Dy(a + x)Pp(a — a + x)|dx
2 5a—0 da J,
=2 (mA® + 2edB — ¢B?) (16)

It can be seen that G and J are essentially the same
G=Ji, Gu=4Jy (17)
The first and second expressions in Eq. (17) correspond, respectively, to the modified (piezoelasticity) and

unmodified (elasticity) version of the energy release rate.

2.2. Poling parallel to crack

When the poling direction is along the x-axis, the constituent relations take another form

or=edp,, oy =mu,—edp, 0y=mu,+ed, (18)

D, =—euy,—¢ep, D,=eu,—zep, (19)
The governing field equations remain unchanged

Viu=0, V¢=0 (20)
The displacement and electric potential functions can again be expressed in terms of complex functions:

u=Re[U(z)], ¢ =Im[V(z)] (21)
The stress and electric displacement components become

0y —io, =mU'(z) + eV'(z)

D, +iD, = eU'(z) — eV'(2) (22)

According to the boundary conditions on the crack surface, the potential functions U(z) and V(z) can be
written as
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mU'(z) + eV'(z) :A72i7 elU'(z) — eV'(2) :L—&—Ci (23)

22 g2 22 42

Assume ¢° = 0, such that constant C in above equation can be determined as C = ed/m.
The asymptotic field solution is

o, = A\/%msg, Oy A\/gsing

0 ) (24)
a a .
D, = B, /ZCOSE’ D, = —B, /ZSIHE
It can be shown that the total energy density W takes the form
1 1 a(eA?> + mB?)
— g€, +-DFE ——~2 T77 ) 2
W =306+ 5Dl = e (25)
As for the case of poling normal to the crack J), and Gy, can be computed as
Ou; ane
— P el = 7" 4 2
Ju 7£ (de Oyt ds> 20me + &) (26)
Gy =+ Lim /Em (a+x)u(a—da+x)dv = — T2 27)
M 2 %a—08a J, il XA T 0T X - 2(me + e?)
The modified J-integrals in Suo et al. (1992) are given by
Ou; am ) 5
Jl = fi: |:(W — D[El')l’lx — U,'jl/lja — n,-D,-qSﬁx} dS = W (SA — mB ) (28)
au,-
J2 = (W — D,’El‘)}’ly — O n;~— — }’l[D,‘d) ) ds=0 (29)
C "0y ?
The modified energy release rate is
1 ) da
G= E%gréa i [0yi(a + x)u;(a — 8a + x) + Dy(a + x)dp(a — da + x)]dx
amn
= (ed® — mB>
2(me + €?) (& mB’) (30)

According to the above results, the relations in Eq. (17) are again established.

3. Stress/strain and electric field/displacement boundary conditions

The response of piezoceramics depends sensitively on the stress/strain and electric field/displacement
boundary conditions. According to the work of Sih (2002), eight possible cases can be considered. They are
given in Table 1 as Case numbers I, II, ... VIIL. The first four referred to as the natural boundary con-
ditions and the last four as the mixed boundary conditions.

For each case, the parameters 4 and B in Egs. (11)—(16) for poling normal to the crack will be different
from those in Egs. (25)—(30) for poling parallel to the crack. They are given in Tables 2 and 3.
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Table 1
Classification of boundary conditions (Sih, 2002)

Case no. Poling reference to crack Boundary conditions Transverse constraint

Natural boundary conditions

I Normal (65, Ex)
I Parallel (0;Ex)
111 Normal (éx,Ex)
v Parallel (€xos Eno)

_ o
= eEy

Q.9 .9
RnRTgTR

I

o

&

8

Q

Mixed boundary conditions

\Y% Normal (05, D)
VI Parallel (605 Doo)
VII Normal (€505 Do)
VIII Parallel (€00, Do)

Q

Q.Q
KRR RY

Q

Table 2
Parameters 4 and B for pole normal to crack

Case no. Constants
A B
I (00 +€Ex)/m —E,
111 € —E
A (€00 + eDy)/ (me + €2) (€00 —mDy)/ (me + €2)
VII €00 (e€e — Do) /e

Table 3
Parameters 4 and B for pole parallel to crack

Case no. Constants
A

II —0xo

v —MEx

VI —0s

VIII —Mex,

o]

me + €*) /mE,,
me + %) /mE,,

00

SO <

00

3.1. Normal poling

Substituting the results of Table 2 into the expressions for J and Jy,, the equivalent energy release rates
are obtained.

o Case I (0, and E..)

J:;%k;—0m+e5EQ (31)
am
Ju = %aw (00 + €Ex) (32)

o Case Il (e, and E.)
J:%w@—k@%—w@ (33)
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arm

JM = 7600<m€x — eEOO) (34)
o Case V (05 and D)
am N ’
= 2e6,,Dy, — mD
J om0 (60>, + 2e0..Doc — mD?)) (35)
am
Ju = 72()118 ) 0o (€00 + D) (36)

o Case VII (e, and D)

J = (em + )&, — D2 (37)
2¢ ‘
Jy = gew[(sm +)es — D] (38)

It is not difficult to conclude from the above that when the mechanical applied stress o, or applied strain
€ become vanishingly small, J;, in Egs. (32), (34), (36) and (38) tend to zero while the Js in Egs. (31), (33),
(35) and (37) become negative. Negative J or G cannot be explained on physical grounds, at least not by
this model. According to the conventional fracture mechanics interpretation, a negative J or G would
correspond to a crack that could absorb energy instead of giving off energy to the surrounding as a result of
lost surface energy due to crack extension.

Even though J;, vanished with the mechanical applied stress and strain, it is not obvious that it should be
regarded as the mechanical energy release (Park and Sun, 1995) since Eqgs. (32) and (34) do contain the
electric field E,, and Egs. (36) and (38) contain the electric displacement D... In other words, electrical
energy is contained in Jy,.

3.2. Parallel poling

In the same way, the parameters 4 and B in Table 3 can be substituted into Egs. (26) and (28) to yield the
Jyr and J expressions for poling aligned parallel to the crack. The results are

e Case Il (6, and E_.)

_ an ,  (me+éd)*
= e ) &0~ p E (39)
amng )
__amE 4
it 2(me + €?) Toc (40)
o Case IV (e and E.)
an y,  (me+er)
=T - E 41
2(me + €?) Moo m (41)
amem®

2(me + €2) oo
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o Case VI (0, and D..)

B an ) )
/= 2(me + €?) [pos —mD] (43)
ame ,
= 44
i 2(me + €?) = (44)
o Case VIII (e, and D)
_amnm ) )
/= 2(me + €?) [emez = Dyl (45)
g amem®* (46)
M 2(me + ) €oo

It can again be seen that when mechanical loads are absent J in Egs. (39), (41), (43) and (45) become
negative. This is contrary to the energy release rate fracture model where energy is assumed to be trans-
ferred from the system with a crack to the surrounding rather than the opposite. The quantity J,, in Egs.
(40), (42), (44) and (46) vanish. As emphasized earlier, this does not imply that J,, is associated exclusively
with mechanical loading.

4. Discussion of numerical results for PZT-4 piezoceramic
To compare the results of the present investigation with those in Sih (2002), calculations will be made for

the PZT-4 piezoceramic material. For the simplified formulation, the constants in Table 4 will be averaged
as in Sih (2002) to yield m = 6.93 x 10'° N/m?, e = 13.64 C/m? and ¢ = 5.74 x 10~ C/Vm. Using these

Table 4
Material properties of PZT-4 piezoceramic
Elastic constants x 10'° (N/m?) Piezoelectric constants (C/m?) Dielectric permittivities x 10~
(C/Vm)
C1 13 €33 Ca4 €3] €33 €1s &n €33
13.9 7.43 11.3 2.56 -6.98 13.84 13.44 6.00 5.47
Table 5
Numerical data for Cases I and II
Ps (Vm/N) Case | Case II
J)act/m)  ayfladfm)  Sfaci/m)  Jf(asjm)  Juflaci/m)  S/(ac/m)
—-0.08 —4.30 -0.14 0.64 -4.80 1.07 1.10
—-0.04 0.10 0.71 0.21 —-0.40 1.07 0.40
—-0.02 1.20 1.14 0.17 0.70 1.07 0.23
—-0.01 1.48 1.36 0.20 0.98 1.07 0.18
0.00 1.57 1.57 0.25 1.07 1.07 0.17
0.01 1.48 1.79 0.33 0.98 1.07 0.18
0.02 1.20 2.00 0.44 0.70 1.07 0.23
0.04 0.10 2.43 0.76 —-0.40 1.07 0.40

0.08 -4.30 3.28 1.73 -4.80 1.07 1.10
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value, J and Jy, will be computed for Cases I, I, ..., VIII and compared with those given in Sih (2002) for
the energy density factor S. Refer to Table 5 for Cases I and II; Table 6 for Cases III and IV; Table 7 for
Case V and VI; and Table 8 for Cases VII and VIII.

The numerical values of J, J;; and S for Case I and II in Table 5 are calculated for different o, and E, or
the ratio p, = E., /0. They are normalized as shown in Table 5 and plotted in Fig. 2 for Case I. Note that
the curves for J and J), can be negative depending on p,. The curve for J is positive for values of p, between
—0.042 and +0.042. The curve is symmetric. Outside of the above range J becomes negative for p, < —0.042
and p, > 40.042. Similarly, J,, switches from positive to negative value at p, ~ —0.074. Only the nor-
malized S-curve remains positive for all values of p, and does not encounter difficulties in physical rea-
soning.

Table 5 also gives the numerical results for Case II, a graphical representation of which is displayed in
Fig. 3. Both the normalized J; and S are positive but again J can be negative for p, < —0.034 and
Ps > +0.034. This shows that the range of E., /o, for which J is positive is very small.

Results for Cases IIT and IV in Table 6 are summarized graphically in Figs. 4 and 5, respectively. The
unmodified path independent integral J,, is positive until the applied electric field £, to applied strain e,
ratio p, reaches about +0.51 x 10'%at which point Jy, takes on negative values. Fig. 4 also shows that the
modified integral J is positive only in the range —0.67 x 10'° < p, < +0.18 x 10'°. The range for positive J
narrows down to —0.22 x 10 < p, < +0.22 x 10" for Case IV in Fig. 5 while J)/[am(ex)’] and
S/[am(ex)’] remain positive for all p,.

Table 6

Numerical data for Cases III and IV
p. x 10" (V/m)  Case 111 Case IV

J/(amé) Juu/ (ame) S/(amé) J/(amé.) Ju/ (ame.) S/ (amé,)

-0.8 —-1.81 4.04 1.58 -11.15 1.07 2.12
-0.5 1.41 3.12 0.77 -3.70 1.07 0.93
-0.2 2.29 2.19 0.33 0.31 1.07 0.29
-0.1 2.06 1.88 0.27 0.88 1.07 0.20
0.0 1.57 1.57 0.25 1.07 1.07 0.17
0.1 0.82 1.26 0.27 0.88 1.07 0.20
0.2 -0.19 0.95 0.33 0.31 1.07 0.29
0.5 -4.77 0.02 0.77 -3.70 1.07 0.93
0.8 -11.70 -0.90 1.58 -11.15 1.07 2.12

Table 7

Numerical data for Cases V and VI
gs x 10719 (C/N) Case V Case VI

@’ /m)  Jufacfm)  S/ac/m)  Jf(ac’jm)  J/tac’/m) _S/(a’/m)

-6.0 -6.63 -0.46 0.91 -3.58 1.07 0.91
-3.0 -1.62 0.31 0.36 -0.09 1.07 0.36
-2.0 -0.46 0.56 0.25 0.55 1.07 0.25
-1.0 0.43 0.82 0.19 0.94 1.07 0.19
0.0 1.07 1.07 0.17 1.047 1.07 0.17
1.0 1.45 1.32 0.19 0.94 1.07 0.19
2.0 1.57 1.58 0.25 0.55 1.07 0.25
3.0 1.43 1.83 0.36 -0.09 1.07 0.36

6.0 -0.53 2.60 0.91 -3.58 1.07 0.91
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Table 8
Numerical data for Cases VII and VIII
g, (C/m?) Case VII Case VIII
J/(amé) Ju/(amé ) §/(ame’) J/(ame) Ju/(amé ) S/(amé)
=50 -17.57 5.0 2.80 —-5.66 1.07 1.24
-30 -1.25 3.92 1.45 -1.35 1.07 0.56
-20 0.73 3.38 0.96 -0.01 1.07 0.34
-10 1.91 2.84 0.60 0.80 1.07 0.21
0.0 2.31 2.31 0.37 1.07 1.07 0.17
10 1.91 1.77 0.26 0.80 1.07 0.21
20 0.73 1.23 0.28 -0.01 1.07 0.34
30 -1.25 0.69 0.42 -1.35 1.07 0.56
50 -17.57 -0.39 1.08 —5.66 1.07 1.24
4 . . . . . . . . .

5 Jw/[a(e=)m

5 Ll 1

g 2

g s/ i

g , [a(0)"/m]

(/2]

°

c

& f <

=5 Ji[a(S=)m]

_,"

T 4 1

@

N

©

g 6 1

§ Case |

Fig. 2. Normalized J, Jy, and S parameters as fracture criteria for Case I with p, specified.

Normalized J, Jw and S parameter

Fig. 3. Normalized J, J), and S parameters as fracture criteria for Case II with p, specified.

-8
-0.1 -0.08 -0.06 -0.04 -0.02 0

Electric field to stress ratio p; (Vm/N)

2 Jul/[a(c.)’/m]

MJ -

Ji[a(c.,)%/m]

Af 1

Caselll

8 . .
-0.1 -0.08 -0.06 -0.04 -0.02 0

Electric field to stress ratio p; (Vm/N)

0.02 0.04 0.06 0.08 0.1

0.02 0.04 0.06 0.08 0.1
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5 Jul[am(€x)?]
0 /
-5

-0}

Sifam(e~)’]

Jifam(e..)2]

151

Normalized J, Jy and S parameter

Case lll

4 08 06 04 02 0 02 04 06 08 1
Electric field to strain ratio p, x10'° (V/m)

Fig. 4. Normalized J, Jy; and S parameters as fracture criteria for Case III with p, specified.

2.
Ju/[am(e.)?] SIW/

S —— S ——

Ji[am(e..)?]

Normalized J, Ju and S parameter

Case IV
20 ‘ ‘ ‘ ‘ ‘ . ‘ ‘ ‘
41 08 -06 -04 02 0 02 04 06 08 1

Electric field to strain ratio P, x 10" (V/im)

Fig. 5. Normalized J, J); and S parameters as fracture criteria for Case IV with p, specified.

The curves in Figs. 6 and 7 for Cases V and VI of Table 7 are similar to those for Cases I and II in Table
5. Note that Jy, in Fig. 6 would change sign at ¢, = —4.2 x 10~!° C/N where g, = D, /o, with D, being the
uniform electric displacement far away from the crack. The range for J being positive is
—1.60 x 1071 < g, < +5.40 x 107'° C/N. The trend of the curves in Fig. 7 for ¢, is the same as that in Fig.
3 for p,. In Fig. 7, only J becomes negative for ¢, < —2.9 x 107!® C/N and ¢, > 2.9 x 107!° C/N. The
normalized energy density factor remained positive for all ¢, in Figs. 6 and 7.

The data in Table 8 correspond to the specification of D, and e, for Cases VII and VIII. When
q. = D+ /€ 1s specified, the resulting curves are exhibited in Figs. 8 and 9 and they are qualitatively the
same as those in Figs. 4 and 5 for Cases III and IV. The point where J), in Fig. 8 changes sign occurs at
g. ~ 43 C/m? and the range for which J remains positive is —24.0 < g, < 24.0 C/m?. By the same token,
Fig. 9 shows that both J), and S are positive for all g, while J is positive only in the range —20.0 < ¢, < 20.0
C/m?.
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Jul/[a(0..)/m

| S/[a(0..)*/m]

Ji[a(6.,)%/m]

Normalized J, Jw and S parameter
N

Case V

6 4 -2 0 2 4 6
Electric displacement to stress ratio q_ x1 0"’ (CIN)

Fig. 6. Normalized J, J), and S parameters as fracture criteria for Case V with ¢, specified.

Jn/[a(0.)2/m]

Ji[a(c..)%/m]

Normalized J, Ju and S parameter

Case VI

4 . . . .
6 4 2 0 2 4 6
Electric displacement to stress ratio qx10™ (C/N)

Fig. 7. Normalized J, J), and S parameters as fracture criteria for Case VI with ¢, specified.

5. Concluding remarks and future work

The path independent J-integral has been used in fracture mechanics based on the premise that it is
connected with the energy released by a unit extension of a line crack. It is limited to nonlinear elastic
materials and serves a useful purpose for evaluating the local stress field of a “conservative” system. When
energy dissipation occurs, the concept serves little or no purpose. Use of the energy dissipation function
becomes necessary. This point has been well documented in Sih (1988) and Sih (1992) related to the
isoenergy density theory and Mast et al. (1995) for actually measuring the energy dissipation function for
composites. The dissipation function measured in Mast et al. (1995) coincides with that used in the
isoenergy density theory in Sih (1988) and Sih (1992).

This work attempts to better understand whether the path independent integral and energy release rate
tool could be applied without controversy to multiscale energy transfer rate crack problems. A particular
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Ju/[am(e..)?’]

S/fam(e..)’]

4l Ji[am(€x)’]

Normalized J, Ju and S parameter

Case VII
8 L L L L L L L L L
50 -40 30 -20 10 0 10 20 30 40 50

Electric displacement to strain ratio q_(C/m?)
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Fig. 8. Normalized J, J), and S parameters as fracture criteria for Case VII with ¢, specified.
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Fig. 9. Normalized J, Jy; and S parameters as fracture criteria for Case VIII with ¢, specified.

situation would be the simultaneous application of electrical and mechanical energy. The theory of linear
piezoelasticity is thus applied to test the validity of the so referred to J; (k = 1,2) and J-integral in the
literature beyond isotropic elasticity. It is disturbing to find that both J; (or J;) and J for a crack can switch
sign for different value of the applied electric field £, and electric displacement D, in relation to the applied
mechanical stress o,, and strain e,,. It depends on the prevailing boundary conditions. Previous works
related to J-integrals were limited to simple materials and boundary conditions. The simple formulation
adopted in this work provides closed form solutions to complicated boundary value problems for testing
the validity of J or J;. It is important to know whether they will remain valid when they are applied to
piezoelectric materials. The objective is to test whether J or J; could be used as a fracture criterion other
than idealized isotropic elastic systems where the energy release rate is limited to a crack segment the length
of which is assumed to vanish in the limit. To this end, it has been shown conclusively that J or J; deny
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Fig. 10. Contours of integration: (a) closed contour and (b) open contour.

positive energy release for the specification of the applied electric field E,, and electric displacement D,
when no mechanical stress o, and strain ¢, are applied. The validity or invalidity could then be decided by
an experiment where only E., is applied with o, (and €e,) equal to zero. If a crack could be extended
(corresponding to positive energy release), then the experiment would contradict the validity of J and J;
where they are predicted to be negative.

For the eight different boundary conditions examined, J integral tends to increase in the negative di-
rection as the applied electric field is increased. This implies that there is less chance of fracturing a pre-
cracked piezoelectric specimen as the intensity of the applied electric field is increased. This conclusion does
not seem to make physical sense. The same type of tests could be done to show whether a crack in piezo-
ceramics would extend for values of £, where J), is predicted to be negative.

It also should be reiterated that regardless of whether the original J-integral (referred to as Jj, in this
work) is modified to J (or J;) to include piezoelectricity or not they both could become negative. This is
discomforting from the viewpoint of physics. Eq. (17) shows that J; and J), are identical to the energy
release rates G (modified) and G,, (Irwin’s closure scheme), respectively. To further clarify the vanishing of
J> in Egs. (15) and (29) such that J = J| for a crack, reference can be made to the contours of integration in
Fig. 10. Shrink the closed contour C in the integrals of Egs. (15) and (29) onto the line crack as shown in
Fig. 10(a). The line contours coinciding with the upper and lower crack surface would vanish because the
crack is impermeable and free of tractions. Hence, the closed contour C reduces to two open contours Cj
and Cp around the tips as shown in Fig. 10(b). Since J; = —J%, this gives J{ = 0 for poling parallel and
normal to the crack. This gives the equivalent condition that J = J;. In connection with this discussion,
other path independent integrals have been studied in Budiansky and Rice (1973), Knowles and Sternberg
(1972) and Chen (2001). They have been referred to as the L and M integrals and shown analytically to be
related to energy release rates associated with crack rotation and expansion rates. Whether these proposed
theoretical ideas could be used in fracture mechanics remain to be seen. Prior to using them in practical
applications, they should pass the fundamental tests of not yielding contradictory results that are not
permitted in mathematics. By the same token, the results could also not be validated by experiments.
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