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Abstract

The concept that an excess of energy would be required to extend a segment of the crack has been widely accepted

and applied to characterize crack extension behavior for isotropic and homogeneous materials at the macroscopic scale.

For linear elastic materials, the path independent integral is basically the same as that of energy release rate.

Fracture analyses of multifunctional materials that involve mechanical as well as electric energy, however, show that

inconsistencies could arise when applying the energy release rate or the path independent integral as a criterion of

fracture. A sign change in the computed energy release rate could occur depending on the specified boundary condi-

tions. This means that crack extension could correspond to dissipation as well as absorption of energy. Although this

result has been pointed out in earlier publications but the implications have not been fully explored.

In order to focus attention on the objective of this work, a simplified formulation of the piezoelectric crack problem

will be considered. It will contain only three material constants. As it has been shown in previous works, the simplified

piezoelastic solutions would exhibit the same qualitative conclusions. Results are presented for poling directed normal

and parallel to the line crack. Shown specifically is the energy release rate can change sign as the applied mechanical

stress is altered in relation to the applied electric field.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Studies concerned with the fracture of piezoceramic materials have had continuing interest in the lite-

rature for many years, both theoretically (McMeeking, 1990; Li et al., 1990; Gao and Barnett, 1996) and

experimentally (Pak and Tobin, 1993; Tobin and Pak, 1993; Park and Sun, 1995). They are too numerous

to be listed. Among the papers that stand out as being original in finding parameters for characterizing

the fracture behavior of piezoelectric materials are those of Gao et al. (1997) and Suo et al. (1992).

Derived by Suo et al. (1992) is a path independent integral J for the piezoelectric material in contrast to
the original J -integral derived by Rice (1968) for the isotropic (elastic) material that could be nonlinear

but still elastic. That is it could be applied to the theory of deformation plasticity. Budiansky and Rice
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(1973) attempted to extend the use of path independent integrals by introducing other integrals referred to

as L and M but their physical meaning in terms of fracture was not clear even though they have been

expounded extensively by others (Chen and Ma, 1997; Herrmann and Herrmann, 1981; Chen and Hasebe,

1998; Chen and Lu, 2001). One of the objectives of the present work is to point out the need to understand
whether it is possible to have a negative energy release rate as it was raised in the paper by Gao et al. (1997).

Obviously, some basic experiments should be done to provide some insights to this problem. The

continuing publication of results related to J , L or M integrals for different crack configurations serves little

or no purpose.

There are alternate choices for fracture criteria. One of them is the strain energy density factor criterion

(Zuo and Sih, 2000; Sih and Zuo, 2000; Sih and Song, 2002; Song and Sih, 2002). It has the advantage that

it is always positive and does not encounter the difficulties to explain that the crack tip would release energy

at one time and absorb energy at other times. What the strain energy density criterion has already done is to
have explained the phenomenon of crack growth enhancement and retardation when the direction of the

applied electric field is changed relative to that of poling (Zuo and Sih, 2000; Sih and Zuo, 2000; Spyro-

poulos et al., 2002). The energy release rate expression could not explain this phenomenon when the

direction of poling is reversed.
2. Simplified formulation of piezoelasticity

In order to facilitate the computation of the energy release rate quantity, the classical piezoelastic

equations will be approximated and simplified for solving crack problems. It is assumed that the dis-
placement in the material parallel to the crack is negligibly small in comparison with that normal to the

crack in a two-dimensional space. This approach was first introduced by Rice et al. (1994) and later was

used in conjunction with complex functions (Gao et al., 1997; Sih, 2002).

Considered is a crack with length 2a that lies on x-axis centered at the origin of coordinate as shown in

Fig. 1. Mechanical stress r1 or strain �1 are applied to the medium at distance remote from the crack.

Electric field E1 or electric displacement D1 can also be applied as shown in Fig. 1(a) for poling normal to

the crack and in Fig. 1(b) for poling parallel to the crack. In the former case, there prevails a transverse

stress r1
x ¼ eE1

y . Here, e stands for one of the piezoelectric constants of the materials. The simplified
version of the displacement field can be written as
Fig. 1. Boundary conditions and poling directions: (a) poling normal to crack and (b) poling parallel to crack.



C.P. Spyropoulos / International Journal of Solids and Structures 41 (2004) 907–921 909
ux ¼ 0; uy ¼ uðx; yÞ ð1Þ

The electric field components Ex and Ey can be expressed in terms of an electric potential function /ðx; yÞ

as
Ex ¼ �/;x; Ey ¼ �/;y ð2Þ
where comma refers to differentiation with respect to the space variables. The boundary condition on crack

surface can be written as
ry ¼ 0; Dy ¼ 0 for � a < x < a; y ¼ 0 ð3Þ
2.1. Poling normal to crack

If the poling direction coincides with the y-axis, then the constituent relations are given by
rx ¼ �e/;y ; ry ¼ ðmuþ e/Þ;y ; rxy ¼ ðmuþ e/Þ;x ð4Þ

Dx ¼ ðeu� e/Þ;x; Dy ¼ ðeu� e/Þ;y ð5Þ
Refer to Gao et al. (1997) and Sih (2002) for details. In the absence of body force and body charge, the

governing field equations become
r2u ¼ 0; r2/ ¼ 0 ð6Þ
in which r2 is the Laplacian operator in two-dimensions.

According to Eq. (6), the displacement and electric potential functions can be expressed in terms of two

complex functions of the variable z ¼ xþ iy as
u ¼ Im½XðzÞ�; / ¼ Im½UðzÞ�: ð7Þ
It follows that the stress and electric displacement components are given by
ry þ irxy ¼ mX0ðzÞ þ eU0ðzÞ
Dy þ iDx ¼ eX0ðzÞ � eU0ðzÞ

ð8Þ
For an embedded line crack, the potential functions XðzÞ and UðzÞ take the form
XðzÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
; UðzÞ ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
ð9Þ
The crack surface conditions in Eq. (3) are thus satisfied. The constants A and B are required to be real.

They can be determined from the boundary conditions at infinity. Without going into details, the

asymptotic field solution can be written as
ry ¼ ðmAþ eBÞ
ffiffiffiffiffi
a
2r

r
cos

h
2
; rxy ¼ �ðmAþ eBÞ

ffiffiffiffiffi
a
2r

r
sin

h
2
; rx ¼ �eB

ffiffiffiffiffi
a
2r

r
cos

h
2

Dy ¼ ðeA� eBÞ
ffiffiffiffiffi
a
2r

r
cos

h
2
; Dx ¼ �ðeA� eBÞ

ffiffiffiffiffi
a
2r

r
sin

h
2

ð10Þ
The total energy density function W is
W ¼ 1

2
rij�ij þ

1

2
DiEi ¼

aðmA2 þ eB2Þ
4r

ð11Þ
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The J -integral originally derived by Rice (1968) is given by
JM ¼
I
C

W dx
�

� rijnj
oui
ox

ds
�

¼ ap
2
AðmAþ eBÞ ð12Þ
while the energy release rate using crack enclosure procedure as proposed by Irwin takes the form
GM ¼ 1

2
Lim
da!0

1

da

Z da

0

ryiðaþ xÞuiða� daþ xÞdx ¼ ap
2
AðmAþ eBÞ ð13Þ
The modified J -integral for piezoelasticity can be found in Suo et al. (1992) and it is designated as
J1 ¼
I
C

ðW
�

� DiEiÞnx � rijnj
oui
ox

� niDi/;x

�
ds ¼ ap

2
ðmA2 þ 2eAB� eB2Þ ð14Þ
J2 ¼
I
C

ðW
�

� DiEiÞny � rijnj
oui
oy

� niDi/;y

�
ds ¼ 0 ð15Þ
in which the subscripts i; j ¼ x; y. Similarly, a modified energy release rate for piezoelasticity is
G ¼ 1

2
Lim
da!0

1

da

Z da

0

ryiða
�

þ xÞuiða� daþ xÞ þ Dyðaþ xÞ/ða� daþ xÞ
�
dx

¼ ap
2
ðmA2 þ 2eAB � eB2Þ ð16Þ
It can be seen that G and J are essentially the same
G ¼ J1; GM ¼ JM ð17Þ
The first and second expressions in Eq. (17) correspond, respectively, to the modified (piezoelasticity) and

unmodified (elasticity) version of the energy release rate.

2.2. Poling parallel to crack

When the poling direction is along the x-axis, the constituent relations take another form
rx ¼ e/;x; ry ¼ mu;y � e/;x; rxy ¼ mu;x þ e/;y ð18Þ
Dx ¼ �eu;y � e/;x Dy ¼ eu;x � e/;y ð19Þ
The governing field equations remain unchanged
r2u ¼ 0; r2/ ¼ 0 ð20Þ
The displacement and electric potential functions can again be expressed in terms of complex functions:
u ¼ Re½UðzÞ�; / ¼ Im½V ðzÞ� ð21Þ
The stress and electric displacement components become
rxy � iry ¼ mU 0ðzÞ þ eV 0ðzÞ
Dy þ iDx ¼ eU 0ðzÞ � eV 0ðzÞ

ð22Þ
According to the boundary conditions on the crack surface, the potential functions UðzÞ and V ðzÞ can be

written as
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mU 0ðzÞ þ eV 0ðzÞ ¼ Aziffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p ; eU 0ðzÞ � eV 0ðzÞ ¼ Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p þ Ci ð23Þ
Assume r1
x ¼ 0, such that constant C in above equation can be determined as C ¼ eA=m.

The asymptotic field solution is
ry ¼ �A

ffiffiffiffiffi
a
2r

r
cos

h
2
; rxy ¼ A

ffiffiffiffiffi
a
2r

r
sin

h
2

Dy ¼ B

ffiffiffiffiffi
a
2r

r
cos

h
2
; Dx ¼ �B

ffiffiffiffiffi
a
2r

r
sin

h
2

ð24Þ
It can be shown that the total energy density W takes the form
W ¼ 1

2
rij�ij þ

1

2
DiEi ¼

aðeA2 þ mB2Þ
4rðmeþ e2Þ ð25Þ
As for the case of poling normal to the crack JM and GM can be computed as
JM ¼
I
C

W dx
�

� rijnj
oui
ox

ds
�

¼ ape
2ðmeþ e2ÞA

2 ð26Þ
GM ¼ 1

2
Lim
da!0

1

da

Z da

0

ryiðaþ xÞuiða� daþ xÞdx ¼ ape
2ðmeþ e2ÞA

2 ð27Þ
The modified J -integrals in Suo et al. (1992) are given by
J1 ¼
I
C

ðW
�

� DiEiÞnx � rijnj
oui
ox

� niDi/;x

�
ds ¼ ap

2ðmeþ e2Þ ðeA
2 � mB2Þ ð28Þ
J2 ¼
I
C

ðW
�

� DiEiÞny � rijnj
oui
oy

� niDi/;y

�
ds ¼ 0 ð29Þ
The modified energy release rate is
G ¼ 1

2
Lim
da!0

1

da

Z da

0

ryiða
�

þ xÞuiða� daþ xÞ þ Dyðaþ xÞ/ða� daþ xÞ
�
dx

¼ ap
2ðmeþ e2Þ ðeA

2 � mB2Þ ð30Þ
According to the above results, the relations in Eq. (17) are again established.
3. Stress/strain and electric field/displacement boundary conditions

The response of piezoceramics depends sensitively on the stress/strain and electric field/displacement

boundary conditions. According to the work of Sih (2002), eight possible cases can be considered. They are

given in Table 1 as Case numbers I, II, . . .,VIII. The first four referred to as the natural boundary con-

ditions and the last four as the mixed boundary conditions.
For each case, the parameters A and B in Eqs. (11)–(16) for poling normal to the crack will be different

from those in Eqs. (25)–(30) for poling parallel to the crack. They are given in Tables 2 and 3.



Table 2

Parameters A and B for pole normal to crack

Case no. Constants

A B

I ðr1 þ eE1Þ=m �E1
III �1 �E1
V ð�r1 þ eD1Þ=ðmeþ e2Þ ðer1 � mD1Þ=ðmeþ e2Þ
VII �1 ðe�1 � D1Þ=e

Table 1

Classification of boundary conditions (Sih, 2002)

Case no. Poling reference to crack Boundary conditions Transverse constraint

Natural boundary conditions

I Normal (r1;E1) r1
x ¼ eE1

y

II Parallel (r1;E1) r1
x ¼ 0

III Normal (�1;E1) r1
x ¼ eE1

y

IV Parallel (�1;E1) r1
x ¼ 0

Mixed boundary conditions

V Normal (r1;D1) r1
x ¼ eE1

y

VI Parallel (r1;D1) r1
x ¼ 0

VII Normal (�1;D1) r1
x ¼ eE1

y

VIII Parallel (�1;D1) r1
x ¼ 0

Table 3

Parameters A and B for pole parallel to crack

Case no. Constants

A B

II �r1 ðmeþ e2Þ=mE1
IV �m�1 ðmeþ e2Þ=mE1
VI �r1 D1
VIII �m�1 D1
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3.1. Normal poling

Substituting the results of Table 2 into the expressions for J and JM , the equivalent energy release rates

are obtained.

• Case I (r1 and E1)
J ¼ ap
2m

½r2
1 � ðmeþ e2ÞE2

1� ð31Þ

JM ¼ ap
2m

r1ðr1 þ eE1Þ ð32Þ
• Case III (�1 and E1)
J ¼ ap
2
ðm�21 � 2eE1�1 � eE2

1Þ ð33Þ



JM

J

JM

J

JM

J

JM

J

JM
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¼ ap
2
�1ðm�1 � eE1Þ ð34Þ
• Case V (r1 and D1)
¼ ap
2ðmeþ e2Þ ðer

2
1 þ 2er1D1 � mD2

1Þ ð35Þ

¼ ap
2ðmeþ e2Þ r1ðer1 þ eD1Þ ð36Þ
• Case VII (�1 and D1Þ
¼ ap
2e

½ðemþ e2Þ�21 � D2
1� ð37Þ

¼ ap
2e

�1½ðemþ e2Þ�1 � eD1� ð38Þ
It is not difficult to conclude from the above that when the mechanical applied stress r1 or applied strain

�1 become vanishingly small, JM in Eqs. (32), (34), (36) and (38) tend to zero while the Js in Eqs. (31), (33),
(35) and (37) become negative. Negative J or G cannot be explained on physical grounds, at least not by

this model. According to the conventional fracture mechanics interpretation, a negative J or G would

correspond to a crack that could absorb energy instead of giving off energy to the surrounding as a result of

lost surface energy due to crack extension.

Even though JM vanished with the mechanical applied stress and strain, it is not obvious that it should be

regarded as the mechanical energy release (Park and Sun, 1995) since Eqs. (32) and (34) do contain the

electric field E1 and Eqs. (36) and (38) contain the electric displacement D1. In other words, electrical

energy is contained in JM .
3.2. Parallel poling

In the same way, the parameters A and B in Table 3 can be substituted into Eqs. (26) and (28) to yield the
JM and J expressions for poling aligned parallel to the crack. The results are

• Case II (r1 and E1)
¼ ap
2ðmeþ e2Þ er2

1

"
� ðmeþ e2Þ2

m
E2
1

#
ð39Þ

¼ ape
2ðmeþ e2Þ r

2
1 ð40Þ
• Case IV (�1 and E1)
¼ ap
2ðmeþ e2Þ em2�21

"
� ðmeþ e2Þ2

m
E2
1

#
ð41Þ

¼ apem2

2ðmeþ e2Þ �
2
1 ð42Þ
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• Case VI (r1 and D1)
J

JM

J

JM

Table 4

Material

Elastic

c11

13.9

Table 5

Numerica

pr (Vm

)0.08
)0.04
)0.02
)0.01
0.00

0.01

0.02

0.04

0.08
¼ ap
2ðmeþ e2Þ ½er

2
1 � mD2

1� ð43Þ

¼ ape
2ðmeþ e2Þ r

2
1 ð44Þ
• Case VIII (�1 and D1)
¼ apm
2ðmeþ e2Þ ½em�

2
1 � D2

1� ð45Þ

¼ apem2

2ðmeþ e2Þ �
2
1 ð46Þ
It can again be seen that when mechanical loads are absent J in Eqs. (39), (41), (43) and (45) become

negative. This is contrary to the energy release rate fracture model where energy is assumed to be trans-

ferred from the system with a crack to the surrounding rather than the opposite. The quantity JM in Eqs.
(40), (42), (44) and (46) vanish. As emphasized earlier, this does not imply that JM is associated exclusively

with mechanical loading.
4. Discussion of numerical results for PZT-4 piezoceramic

To compare the results of the present investigation with those in Sih (2002), calculations will be made for

the PZT-4 piezoceramic material. For the simplified formulation, the constants in Table 4 will be averaged

as in Sih (2002) to yield m ¼ 6:93� 1010 N/m2, e ¼ 13:64 C/m2 and e ¼ 5:74� 10�9 C/Vm. Using these
properties of PZT-4 piezoceramic

constants· 1010 (N/m2) Piezoelectric constants (C/m2) Dielectric permittivities· 10�9

(C/Vm)

c13 c33 c44 e31 e33 e15 e11 e33

7.43 11.3 2.56 )6.98 13.84 13.44 6.00 5.47

l data for Cases I and II

/N) Case I Case II

J=ðar2
1=mÞ JM=ðar2

1=mÞ S=ðar2
1=mÞ J=ðar2

1=mÞ JM=ðar2
1=mÞ S=ðar2

1=mÞ
)4.30 )0.14 0.64 )4.80 1.07 1.10

0.10 0.71 0.21 )0.40 1.07 0.40

1.20 1.14 0.17 0.70 1.07 0.23

1.48 1.36 0.20 0.98 1.07 0.18

1.57 1.57 0.25 1.07 1.07 0.17

1.48 1.79 0.33 0.98 1.07 0.18

1.20 2.00 0.44 0.70 1.07 0.23

0.10 2.43 0.76 )0.40 1.07 0.40

)4.30 3.28 1.73 )4.80 1.07 1.10
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value, J and JM will be computed for Cases I, II, . . ., VIII and compared with those given in Sih (2002) for

the energy density factor S. Refer to Table 5 for Cases I and II; Table 6 for Cases III and IV; Table 7 for

Case V and VI; and Table 8 for Cases VII and VIII.

The numerical values of J , JM and S for Case I and II in Table 5 are calculated for different r1 and E1 or
the ratio pr ¼ E1=r1. They are normalized as shown in Table 5 and plotted in Fig. 2 for Case I. Note that

the curves for J and JM can be negative depending on pr. The curve for J is positive for values of pr between
)0.042 and +0.042. The curve is symmetric. Outside of the above range J becomes negative for pr < �0:042
and pr > þ0:042. Similarly, JM switches from positive to negative value at pr � �0:074. Only the nor-

malized S-curve remains positive for all values of pr and does not encounter difficulties in physical rea-

soning.

Table 5 also gives the numerical results for Case II, a graphical representation of which is displayed in

Fig. 3. Both the normalized JM and S are positive but again J can be negative for pr < �0:034 and
pr > þ0:034. This shows that the range of E1=r1 for which J is positive is very small.

Results for Cases III and IV in Table 6 are summarized graphically in Figs. 4 and 5, respectively. The

unmodified path independent integral JM is positive until the applied electric field E1 to applied strain �1
ratio pe reaches about +0.51 · 1010at which point JM takes on negative values. Fig. 4 also shows that the

modified integral J is positive only in the range �0:67� 1010 < pe < þ0:18� 1010. The range for positive J
narrows down to �0:22� 1010 < pe < þ0:22� 1010 for Case IV in Fig. 5 while JM=½amð�1Þ2� and

S=½amð�1Þ2� remain positive for all pe.
Table 6

Numerical data for Cases III and IV

pe � 1010 (V/m) Case III Case IV

J=ðam�21Þ JM=ðam�21Þ S=ðam�21Þ J=ðam�21Þ JM=ðam�21Þ S=ðam�21Þ
)0.8 )1.81 4.04 1.58 )11.15 1.07 2.12

)0.5 1.41 3.12 0.77 )3.70 1.07 0.93

)0.2 2.29 2.19 0.33 0.31 1.07 0.29

)0.1 2.06 1.88 0.27 0.88 1.07 0.20

0.0 1.57 1.57 0.25 1.07 1.07 0.17

0.1 0.82 1.26 0.27 0.88 1.07 0.20

0.2 )0.19 0.95 0.33 0.31 1.07 0.29

0.5 )4.77 0.02 0.77 )3.70 1.07 0.93

0.8 )11.70 )0.90 1.58 )11.15 1.07 2.12

Table 7

Numerical data for Cases V and VI

qr � 10�10 (C/N) Case V Case VI

J=ðar2
1=mÞ JM=ðar2

1=mÞ S=ðar2
1=mÞ J=ðar2

1=mÞ JM=ðar2
1=mÞ S=ðar2

1=mÞ
)6.0 )6.63 )0.46 0.91 )3.58 1.07 0.91

)3.0 )1.62 0.31 0.36 )0.09 1.07 0.36

)2.0 )0.46 0.56 0.25 0.55 1.07 0.25

)1.0 0.43 0.82 0.19 0.94 1.07 0.19

0.0 1.07 1.07 0.17 1.047 1.07 0.17

1.0 1.45 1.32 0.19 0.94 1.07 0.19

2.0 1.57 1.58 0.25 0.55 1.07 0.25

3.0 1.43 1.83 0.36 )0.09 1.07 0.36

6.0 )0.53 2.60 0.91 )3.58 1.07 0.91



Table 8

Numerical data for Cases VII and VIII

qe (C/m2) Case VII Case VIII

J=ðam�21Þ JM=ðam�21Þ S=ðam�21Þ J=ðam�21Þ JM=ðam�21Þ S=ðam�21Þ
)50 )7.57 5.0 2.80 )5.66 1.07 1.24

)30 )1.25 3.92 1.45 )1.35 1.07 0.56

)20 0.73 3.38 0.96 )0.01 1.07 0.34

)10 1.91 2.84 0.60 0.80 1.07 0.21

0.0 2.31 2.31 0.37 1.07 1.07 0.17

10 1.91 1.77 0.26 0.80 1.07 0.21

20 0.73 1.23 0.28 )0.01 1.07 0.34

30 )1.25 0.69 0.42 )1.35 1.07 0.56

50 )7.57 )0.39 1.08 )5.66 1.07 1.24
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Fig. 2. Normalized J , JM and S parameters as fracture criteria for Case I with pr specified.
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Fig. 3. Normalized J , JM and S parameters as fracture criteria for Case II with pr specified.
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Fig. 5. Normalized J , JM and S parameters as fracture criteria for Case IV with pe specified.
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Fig. 4. Normalized J , JM and S parameters as fracture criteria for Case III with pe specified.
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The curves in Figs. 6 and 7 for Cases V and VI of Table 7 are similar to those for Cases I and II in Table
5. Note that JM in Fig. 6 would change sign at qr ffi �4:2� 10�10 C/N where qr ¼ D1=r1 with D1 being the

uniform electric displacement far away from the crack. The range for J being positive is

�1:60� 10�10 < qr < þ5:40� 10�10 C/N. The trend of the curves in Fig. 7 for qr is the same as that in Fig.

3 for pr. In Fig. 7, only J becomes negative for qr < �2:9� 10�10 C/N and qr > 2:9� 10�10 C/N. The

normalized energy density factor remained positive for all qr in Figs. 6 and 7.

The data in Table 8 correspond to the specification of D1 and �1 for Cases VII and VIII. When

qe ¼ D1=�1 is specified, the resulting curves are exhibited in Figs. 8 and 9 and they are qualitatively the

same as those in Figs. 4 and 5 for Cases III and IV. The point where JM in Fig. 8 changes sign occurs at
qe � 43 C/m2 and the range for which J remains positive is �24:0 < qe < 24:0 C/m2. By the same token,

Fig. 9 shows that both JM and S are positive for all qe while J is positive only in the range �20:0 < qe < 20:0
C/m2.
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Fig. 6. Normalized J , JM and S parameters as fracture criteria for Case V with qr specified.
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Fig. 7. Normalized J , JM and S parameters as fracture criteria for Case VI with qr specified.
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5. Concluding remarks and future work

The path independent J -integral has been used in fracture mechanics based on the premise that it is

connected with the energy released by a unit extension of a line crack. It is limited to nonlinear elastic

materials and serves a useful purpose for evaluating the local stress field of a ‘‘conservative’’ system. When

energy dissipation occurs, the concept serves little or no purpose. Use of the energy dissipation function

becomes necessary. This point has been well documented in Sih (1988) and Sih (1992) related to the

isoenergy density theory and Mast et al. (1995) for actually measuring the energy dissipation function for
composites. The dissipation function measured in Mast et al. (1995) coincides with that used in the

isoenergy density theory in Sih (1988) and Sih (1992).

This work attempts to better understand whether the path independent integral and energy release rate

tool could be applied without controversy to multiscale energy transfer rate crack problems. A particular
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Fig. 8. Normalized J , JM and S parameters as fracture criteria for Case VII with qe specified.

-50 -40 -30 -20 -10 0 10 20 30 40 50 
-6 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

Electric displacement to strain ratio q  (C/m2) 

Case VIII 

S/[am( )2] 

JM/[am( )2] 

J/[am( )2] 

N
or

m
al

iz
ed

 J
, J

M
 a

nd
 S

 p
ar

am
et

er
 

Fig. 9. Normalized J , JM and S parameters as fracture criteria for Case VIII with qe specified.
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situation would be the simultaneous application of electrical and mechanical energy. The theory of linear
piezoelasticity is thus applied to test the validity of the so referred to Jk (k ¼ 1; 2) and J -integral in the

literature beyond isotropic elasticity. It is disturbing to find that both Jk (or J1) and J for a crack can switch

sign for different value of the applied electric field E1 and electric displacement D1 in relation to the applied

mechanical stress r1 and strain �1. It depends on the prevailing boundary conditions. Previous works

related to J -integrals were limited to simple materials and boundary conditions. The simple formulation

adopted in this work provides closed form solutions to complicated boundary value problems for testing

the validity of J or Jk. It is important to know whether they will remain valid when they are applied to

piezoelectric materials. The objective is to test whether J or Jk could be used as a fracture criterion other
than idealized isotropic elastic systems where the energy release rate is limited to a crack segment the length

of which is assumed to vanish in the limit. To this end, it has been shown conclusively that J or Jk deny



Fig. 10. Contours of integration: (a) closed contour and (b) open contour.
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positive energy release for the specification of the applied electric field E1 and electric displacement D1
when no mechanical stress r1 and strain �1 are applied. The validity or invalidity could then be decided by
an experiment where only E1 is applied with r1 (and �1) equal to zero. If a crack could be extended

(corresponding to positive energy release), then the experiment would contradict the validity of J and Jk
where they are predicted to be negative.

For the eight different boundary conditions examined, J integral tends to increase in the negative di-

rection as the applied electric field is increased. This implies that there is less chance of fracturing a pre-

cracked piezoelectric specimen as the intensity of the applied electric field is increased. This conclusion does

not seem to make physical sense. The same type of tests could be done to show whether a crack in piezo-

ceramics would extend for values of E1 where JM is predicted to be negative.
It also should be reiterated that regardless of whether the original J -integral (referred to as JM in this

work) is modified to J (or J1) to include piezoelectricity or not they both could become negative. This is

discomforting from the viewpoint of physics. Eq. (17) shows that J1 and JM are identical to the energy

release rates G (modified) and GM (Irwin�s closure scheme), respectively. To further clarify the vanishing of

J2 in Eqs. (15) and (29) such that J ¼ J1 for a crack, reference can be made to the contours of integration in

Fig. 10. Shrink the closed contour C in the integrals of Eqs. (15) and (29) onto the line crack as shown in

Fig. 10(a). The line contours coinciding with the upper and lower crack surface would vanish because the

crack is impermeable and free of tractions. Hence, the closed contour C reduces to two open contours CA

and CB around the tips as shown in Fig. 10(b). Since JA
2 ¼ �JB

2 , this gives J
C
2 ¼ 0 for poling parallel and

normal to the crack. This gives the equivalent condition that J ¼ J1. In connection with this discussion,

other path independent integrals have been studied in Budiansky and Rice (1973), Knowles and Sternberg

(1972) and Chen (2001). They have been referred to as the L and M integrals and shown analytically to be

related to energy release rates associated with crack rotation and expansion rates. Whether these proposed

theoretical ideas could be used in fracture mechanics remain to be seen. Prior to using them in practical

applications, they should pass the fundamental tests of not yielding contradictory results that are not

permitted in mathematics. By the same token, the results could also not be validated by experiments.
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